The realization space is [1 0 1 1 1 1 0 1 0 1 1] [0 1 1 1 x1 -x1^3 + x1^2 0 0 1 x1 -x1^3 + x1^2] [0 0 0 1 x1 1 1 -x1^3 + x1^2 - 1 x1^3 - x1^2 + 2 -x1^3 + x1^2 - 1 -x1^2 + 2*x1 - 1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (x1^4 - x1^3 + 2*x1 - 1, -x1^9 + 4*x1^8 - 8*x1^7 + 9*x1^6 - 6*x1^5 + 2*x1^4) avoiding the zero loci of the polynomials RingElem[x1^2 - 2*x1 + 2, x1, x1^5 - 2*x1^4 + x1^3 + 3*x1^2 - 5*x1 + 3, x1^3 - x1 + 2, x1^3 - x1^2 + x1 + 1, x1^2 - x1 + 1, x1^3 + 2, x1 - 1, x1^5 - x1^4 + 2*x1^2 - x1 + 1, x1 + 1, x1^6 - 2*x1^5 + x1^4 + 3*x1^3 - 4*x1^2 + 2*x1 + 1, x1^3 - x1 + 1, x1^3 - x1^2 + 1, x1^3 - x1^2 - x1 + 2, x1^4 - x1^2 + 2*x1 + 1, x1^5 - 2*x1^4 + x1^3 + x1^2 - x1 - 1, x1^6 - 2*x1^5 + x1^4 + 2*x1^3 - 2*x1^2 - x1 + 2, x1^6 - 2*x1^5 + x1^4 + 3*x1^3 - 3*x1^2 + 3, x1^4 - 2*x1^3 + x1^2 + x1 - 2, x1^6 - 2*x1^5 + x1^4 + 2*x1^3 - 2*x1^2 + 2, x1^2 - x1 + 2, x1^2 - x1 - 1]